Borrar Mensaje flor rosaldo lopez

Fecha  14/07/2005 02:17
florrosaldo@estadistica.zzn.com 

Procedente de:
   No mostrado/ Not shown

Navegador:
   Internet Explorer 6.x

Sistema Operativo:
   Windows XP

 
 


 Prueba de hipótesis, hipótesis estadística, niveles de significancia y error alfa y error beta
Prueba de hipótesis, hipótesis estadística, niveles de significancia y error alfa y error beta
La prueba de hipótesis se puede utilizar para probar hipótesis en relación con datos cualitativos, se compone de una hipótesis alternativa, estadística, un nivel de significación, errores alfa y errores beta.
Una hipótesis estadística es una suposición hecha con respecto a la función de distribución de una variable aleatoria. Para establecer la verdad o falsedad de una hipótesis estadística con certeza total, será necesario examinar toda la población. En la mayoría de las situaciones reales no es posible o practico efectuar este examen, y el camino mas aconsejable es tomar una muestra aleatoria de la población y en base a ella, decidir si la hipótesis es verdadera o falsa. En la prueba de una hipótesis estadística, es costumbre declarar la hipótesis como verdadera si la probabilidad calculada excede el valor tabular llamado el nivel de significación y se declara falsa si la probabilidad calculada es menor que el valor tabular. La prueba a realizar dependerá del tamaño de las muestras, de la homogeneidad de las varianzas y de la dependencia o no de las variables.
El considerar el término significativo implica utilizar términos comparativos de dos hipótesis. Los test de hipótesis son test de significación estadística que cuantifican hasta que punto la variabilidad de la muestra puede ser responsable de los resultados de un estudio en particular. La Ho (hipótesis nula) representa la afirmación de que no hay asociación entre las dos variables estudiadas y la Ha (hipótesis alternativa) afirma que hay algún grado de relación o asociación entre las dos variables. Nuevamente la estadística nos muestra su utilidad ya que nos ayuda a tomar la decisión de que hipótesis debemos elegir. Dicha decisión puede ser afirmada con una seguridad que nosotros previamente decidimos. El nivel de significación se estableció siguiendo los comentarios del estadístico Fisher que señaló "es conveniente trazar una línea de demarcación a partir de la cual podamos decir: que hay algo en el tratamiento. ” El mecanismo de los diferentes test se realiza aunque con matices siempre de la siguiente forma: En primer lugar se mira la magnitud de la diferencia que hay entre los grupos a comparar (A y B). Si esta magnitud o valor absoluto es mayor que un error estándar definido multiplicado por una seguridad definida, concluimos que la diferencia es significativa entre A y B. Por tanto aceptamos la hipótesis alternativa y rechazamos la hipótesis nula.
Conviene por otra parte considerar que la significación estadística entre dos variables depende de dos componentes fundamentales. El primero es la magnitud de la diferencia a testar. Cuanto más grande sea la diferencia entre las dos variables, más fácil es demostrar que la diferencia es significativa. Por el contrario si la diferencia entre ambas variables es pequeña, las posibilidades de detectar diferencias entre las mismas se dificulta. El segundo componente fundamental a tener en cuanta al testar diferencias entre dos variables es el tamaño muestral. Cuanto más grande sea dicho tamaño muestral más fácil es detectar diferencias entre las mismas. Pequeñas diferencias se pueden detectar con grandes tamaños muestrales y grandes diferencias entre variables necesitan muchos menos pacientes o individuos a ser estudiados. Cualquier diferencia puede ser estadísticamente significativa si se dispone del suficiente número de pacientes.
Al realizar el test estadístico, podríamos correr el riesgo de equivocarnos al rechazar la hipótesis nula. La probabilidad de rechazar la hipótesis nula cuando en realidad es verdadera (error de tipo I) se le denomina nivel de significación y es la "p". Esta probabilidad de rechazar la hipótesis nula cuando es verdadera se le conoce también como error alfa. La "p" no es por tanto un indicador de fuerza de la asociación ni de su importancia.
La significación estadística es por tanto una condición resultante del rechazo de una hipótesis nula mediante la aplicación de una prueba estadística de significación. El nivel de significación es el riesgo o la probabilidad que voluntariamente asume el investigador de equivocarse al rechazar la hipótesis nula, cuando en realidad es cierta. Este riesgo se establece normalmente en 0.05 ó 0.01. El proceso de poner a prueba una hipótesis involucra una toma de decisiones para rechazar o no la hipótesis nula. Aunque los valores de la "p" son los de una variable continua, se utiliza para forzar una decisión cualitativa, tomando partido por una u otra hipótesis. Si p < 0.05 se considera significativo, en cuyo caso se rechaza la hipótesis nula y no significativo si p> 0.05 en cuyo caso no se rechaza. Una "p" pequeña significa que la probabilidad de que los resultados obtenidos se deban al azar es pequeña.
El riesgo alfa  ("p") indica la probabilidad de cometer un error de tipo I (falso positivo). El error de tipo I, es por lo tanto rechazar la Ho cuando en realidad es verdadera. Se podría considerar que para evitar este tipo de error deberíamos de elegir un nivel de confianza más elevado, sin embargo al aumentar el nivel de confianza aumenta la probabilidad de cometer el error de tipo II. El error de tipo II consiste en aceptar la hipótesis nula cuando es falsa y esto se conoce como el error de tipo II o Beta ( ) (falso negativo). En la ejecución de un estudio determinado no es posible saber si estamos cometiendo el error de tipo I o error de tipo II, sin embargo hay una serie de recomendaciones que podríamos seguir para disminuir dichos errores.
El uso y formulación correcta de las hipótesis le permiten al investigador poner a prueba aspectos de la realidad, disminuyendo la distorsión que pudieran producir sus propios deseos o gustos. Pueden ser sometidas a prueba y demostrarse como probablemente correctas o incorrectas sin que interfieran los valores o creencias del individuo. Creo que cada uno de los conceptos son aplicables en mi disciplina y con más razón en las demás disciplinas que se encuentran en constantes cambios, ya que están más vinculadas con fenómenos naturales que involucran la intervención directa de la ciencia y por obvias razones de un método de investigación que conlleva a técnicas, estrategias, etc, para dar respuesta a las distintas situaciones que ocurren en la vida del hombre en sociedad.


                                                                                                                                                                                                                                                                                                                               


Respuestas (2)
  • » Prueba de hipótesis, hipótesis estadística, niveles de significancia y error alfa y error beta « - flor rosaldo lopez - 14/07/2005 02:17



Volver al foro

Responder
Nombre / Nick
EMail
Subject / Titulo
Link a tu Web
Recibir un email cuando mi mensaje sea contestado
Mensaje